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Abstract

Genetic similarity matrices are commonly used to assess population substructure (PS) in genetic studies. Through simulation studies
and by the application to whole-genome sequencing (WGS) data, we evaluate the performance of three genetic similarity matrices:
the unweighted and weighted Jaccard similarity matrices and the genetic relationship matrix. We describe different scenarios that can
create numerical pitfalls and lead to incorrect conclusions in some instances. We consider scenarios in which PS is assessed based
on loci that are located across the genome (‘globally’) and based on loci from a specific genomic region (‘locally’). We also compare
scenarios in which PS is evaluated based on loci from different minor allele frequency bins: common (>5%), low-frequency (5–0.5%) and
rare (<0.5%) single-nucleotide variations (SNVs). Overall, we observe that all approaches provide the best clustering performance when
computed based on rare SNVs. The performance of the similarity matrices is very similar for common and low-frequency variants,
but for rare variants, the unweighted Jaccard matrix provides preferable clustering features. Based on visual inspection and in terms of
standard clustering metrics, its clusters are the densest and the best separated in the principal component analysis of variants with rare
SNVs compared with the other methods and different allele frequency cutoffs. In an application, we assessed the role of rare variants
on local and global PS, using WGS data from multiethnic Alzheimer’s disease data sets and European or East Asian populations from
the 1000 Genome Project.

Keywords: population stratification, similarity matrix, Jaccard matrix, genetic relationship matrix, rare variant, principal component
analysis
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Introduction
Population stratification/substructure (PS), meaning systematic
differences of minor allele frequencies (MAF) between popu-
lations, can cause spurious associations in population-based
genome-wide association studies (GWASs) if not accounted for
[1, 2]. To guard against biases introduced by PS, the most
widely used method is to include principal components (PCs),
calculated based on the genetic relationship matrix (GRM), as
fixed covariates in a regression model [3, 4]. Another popular
method is to include the GRM in mixed models as it captures
both PS and cryptic relatedness [5, 6]. In the context of population
genetics, genetic similarity matrices are utilized to compare
different populations and their relative distance to each other.

Historically, single-nucleotide variations (SNVs) with a MAF > 5%
are almost exclusively used for the computation of genetic
similarity matrices because principal component analysis (PCA)
of PS was reported to perform worse with rare variants than
with common ones [7–9]. When over 80% of the SNVs are low
frequency (0.5% < MAF ≤ 5%) or rare (MAF ≤ 0.5%) in the era of
next-generation sequencing data [10, 11], these SNVs helped
to identify additional PS and better control for Type 1 error in
association studies of rare variants [12, 13]. We and others showed
that using rare variants and alternative similarity matrices can
provide a finer scale/higher resolution of PS [14–16]. Specifically,
we have shown that the standard (i.e. unweighted) Jaccard
index could be used to reveal finer scale population structure
[15]. Subsequently, the weighted Jaccard index was introduced
providing a more formal connection to the kinship coefficient
and a similarity test for genetic outliers [17].

Local PS (i.e. PS within a small defined genomic locus/re-
gion on a chromosome) has been shown to differ from global
PS along the genome [18, 19] and is well recognized in local
ancestry studies [20, 21]. Therefore, capturing local PS could be
helpful in the GWASs when small chromosomal regions can
show stratification patterns that differ from the global strati-
fication pattern. Here, we systematically compare three simi-
larity matrices used in PCA: (1) the GRM, (2) the unweighted
and (3) the weighted Jaccard similarity matrix. Using simula-
tions, we assessed the ability of similarity matrices to capture PS
under different MAF scenarios globally and locally. Furthermore,
we validated our findings in whole-genome sequencing (WGS)
data from a disease-focused [Alzheimer’s disease (AD)] cohort
and a population-based cohort from the 1000 Genome Project
[22].

Methods
Simulation studies for similarity matrices
Simulation studies for similarity matrices were adopted from
the R-package ‘jacpop’ ver. 0.6 (https://cran.r-project.org/web/
packages/jacpop) and followed the design as described in Price
et al. [4]. Briefly, we used the Balding–Nichols model [23] with
a fixation index (a measure of population differentiation, Fst) of
0.1% (on the order of within-country differences) [24] to simu-
late 3000 subjects from three populations of equal sizes where
the number of markers in each data set was roughly 10 000.
Ancestral allele frequencies p for each SNP were drawn from
a uniform distribution and allele frequencies for each popula-
tion were drawn from a beta distribution with the following
parameters: p(1 – Fst)/Fst and (1 – p) (1 – Fst)/Fst. We divided
the data set into three MAF bins (Table 1): common (>5%), low-
frequency (5–0.5%) and rare SNVs (<0.5%) without singletons. We

did not simulate linkage disequilibrium (LD) in order to make a
fair comparison between different similarity matrices and MAF
thresholds.

The similarity matrices were calculated with the locStra R-
package ver. 1.9 [18]: (1) the GRM defined in Yang et al. [25], (2) the
unweighted and (3) weighted Jaccard similarity matrices defined
in Prokopenko et al. [15] and Schlauch et al. [17], respectively,
where the weight was larger for the rarer variants because it was
computed to be the inverse of the probability that two alleles
selected belong to the set of minor alleles without replacement.

GRMjk = 1
N

∑N

i=1

(
xij − 2pi

) (
xik − 2pi

)

2pi
(
1 − 2pi

)

where xij or xik are the number of copies of the reference allele
for the ith SNP of the individual (j or k, respectively) with N
independent variants, and pi is the frequency of the reference
allele.

Unweighted Jaccardjk =
∑N

i=1 Gi,jGi,k∑N
i=1 I

[∑2n
l=1Gi,l > 1

]

where G is a genotype matrix with n individuals (2n haploid
genomes), with N independent variants, and I[· ] is an indicator
function, evaluating to 1 if true and 0 if false.

Weighted Jaccardjk =
∑N

i=1 wkGi,jGi,k∑N
i=1 I

[∑2n
l=1Gi,l > 1

]

where

wk =

⎧⎪⎨
⎪⎩

(2n
2

)
(∑2n

l=1 Gi,l
2

) if
∑2n

l=1Gi,l > 1

0 if
∑2n

l=1Gi,l ≤ 1

All analyses were carried out using R ver. 4.0.3, a free software
from the R Foundation for Statistical Computing. Our simula-
tion process was displayed in a flow diagram (Supplementary
Figure 1).

The decomposition method for PCA analysis
with similarity matrices
To extract PCs, we performed eigenvalue decomposition of the
corresponding similarity matrices. While the GRM is column
centered by construction, we have centered the other similarity
matrices by subtracting the column means from their corre-
sponding columns. Several R packages for the computation of
eigenvalue or singular value decompositions are available (RSpec-
tra ver. 0.16-1 or Matrix ver. 1.4-1): ‘eigs_sym’, ‘eigs’, ‘eigen’ and
‘svd’. The ‘eigs’ function in RSpectra has shown the most stable
outcome for all similarity matrices (Supplementary Figure 2).
Therefore, we used the ‘eigs’ function for the comparison of
clustering populations among the similarity matrices.

Population clustering in each similarity matrix
under common, low-frequency and rare MAF
simulations
We have evaluated how well the simulated populations are clus-
tered based on the first and second eigenvectors for each matrix
and respective simulation scenario. As an objective measure for
comparing similarity matrices, a goodness of fit test based on the
within sum of squares in clustering the three populations was
employed. All results are based on a total of 100 independent
simulations for each matrix with the same Fst of 0.1% and 3000

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/24/1/bbac611/6965908 by U

niversity of Southern C
alifornia user on 28 M

arch 2023

https://cran.r-project.org/web/packages/jacpop
https://cran.r-project.org/web/packages/jacpop
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac611#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac611#supplementary-data


Similarity matrices for population stratification | 3

Table 1. The outlined simulation scenarios with three populations

Data set Variants’ condition Sample numbers in each
population

After removing minimum variants or singletons

Number of SNVs MAF range

Data set 1 All SNVs
MAC ≥ 2

1000 + 1000 + 1000 9904 0.033–50.0%

Data set 2 Common SNVs
MAC ≥ 300

1000 + 1000 + 1000 9862 5.0–50.0%

Data set 3 Low-frequency SNVs
MAC ≥ 30

1000 + 1000 + 1000 9897 0.5–5.0%

Data set 4 Rare SNVs
MAC ≥ 2

1000 + 1000 + 1000 9920 0.033–0.5%

subjects in three populations having the category of MAFs as
described above.

Canonical correlation analysis (CCA) between
global and local substructure in each similarity
matrix under common, low-frequency and rare
MAF simulations
Local substructure can differ from global substructure, especially
in the admixed populations [26], which may lead to false posi-
tives or reduce power in association studies. In order to examine
each similarity matrix’s ability to capture the local substructure
compared with the global one, we generated a data set having PS
with the fixation index (Fst = 0.1%) and 1000 subjects. SNVs were
simulated either coming from two discrete populations (outer
regions containing 50 000 + 50 000 SNVs, respectively), or from five
discrete populations (mid-region containing 20 000 SNVs) using
the same criteria of MAF thresholds as described previously. Next,
we calculated global PCs based on all 120K SNVs (outer plus mid-
regions) and local PCs were calculated using a non-overlapping
sliding window of 2000 SNVs for 60 consecutive regions. We
evaluated in 100 simulations the canonical correlation between
global 10 PCs and local 10 PCs for each consecutive region based
on each MAF data set using either GRM or Jaccard matrix. For CCA,
we used the CCA R-package ver. 1.2.1 [27].

In addition, we generated confidence intervals of the expected
difference in canonical correlation. For each matrix, we used boot-
strapping with 1000 replicates, where we calculated the canonical
correlation between global PCs and local PCs on a randomly
selected coherent window of the same size (2000 SNVs).

WGS AD data sets
We have used two WGS data sets with AD cases and controls from
the National Institute of Mental Health (NIMH) and the National
Institute of Aging Alzheimer’s Disease Sequencing Project (NIA
ADSP; Supplementary Table 1). Briefly, the former sequencing and
quality control is described elsewhere [28, 29]. Vcf files for the
NIA ADSP cohort were obtained from the National Institute on
Aging Genetics of Alzheimer’s Disease Data Storage Site (NIA-
GADS) under the accession number NG00067. NIA ADSP was
divided into three subpopulations based on self-reported popu-
lation: non-Hispanic white (NHW), African American (AA) and
Hispanic (HISP). We have verified the population assignment
based on PCA using the Jaccard matrix and removed outliers that
were more than 5 SD away from the mean based on each of the
first ten PCs. CCA was performed similarly to simulations. Briefly,
we have selected a 5 MB region at each of the reported GWAS
hits in [30] centered at the corresponding hit. Using the same
three MAF bins and two similarity matrices (Jaccard and GRM), we

calculated global PCs based on a genome-wide independent set
of 100 000 variants and local PCs based on 1 MB regions for each
similarity matrix. We assessed the canonical correlation based on
10 PCs using only AD cases (for the NIMH family-based data set,
we have extracted one case per family). Confidence intervals were
calculated using bootstrapping with 1000 replicates, as described
above.

WGS data sets in European and east Asian
populations based on the 1000 genome project
We checked how well each similarity matrix could identify sub-
populations in European and East Asian populations from the
1000 Genome Project WGS data. The 503 European-ancestry indi-
viduals consisted of 99 Utah residents (CEPH) with northern and
western European ancestry (CEU), 107 individuals from Iberian
populations in Spain (IBS), 91 British in England and Scotland
(GBR), 99 Finnish in Finland (FIN) and 107 Toscani in Italia (TSI),
whereas the 504 East Asian-ancestry individuals consisted of 104
Japanese in Tokyo, Japan (JPT), 103 Han Chinese in Beijing, China
(CHB), 105 Southern Han Chinese, China (CHS), 93 Chinese Dai
in Xishuangbanna, China (CDX) and 99 Kinh in Ho Chi Minh City,
Vietnam (KHV). The same criteria of MAFs were applied: common,
low-frequency and rare SNVs without singletons. The SNV quality
criteria were 0.0% genotyping missing rate and no deviations from
Hardy–Weinberg proportions (P-value < 10−6). LD pruning was per-
formed to select independent variants and reduce the compu-
tational burden. The following clustering metrics assuming five
population clusters in each PCA plot were used to assess cluster-
ing performance based on different similarity matrices: (1) within
sum of squares, (2) Davies–Bouldin index, (3) Fowlkes–Mallows
index and (4) average silhouette width [31–33]. Specifically, the
Davies–Bouldin index is based on a ratio of within-cluster and
between-cluster distances [31]. The optimal clustering solution
has the smallest Davies–Bouldin index value. Fowlkes–Mallows
index is a performance metric to evaluate and compare a cluster
label set with a true label set [32]. A higher value for the Fowlkes–
Mallows index indicates a higher similarity between the clusters.
The silhouette value is a measure of how similar an object is to its
own cluster (cohesion) compared with other clusters (separation)
[33]. The value of the silhouette ranges between [−1, 1], where a
high value indicates that the object is well matched to its cluster
and poorly matched to neighboring clusters. In our analysis, the
Fowlkes–Mallows index was based on K-medoids, whereas the rest
indexes were computed using the Euclidean distance measure.
K-medoids clustering uses the most centrally located object of
a cluster instead of using the mean point as the center of a
cluster in K-means. Therefore, it is more robust to noises and
outliers compared with K-means. We would like to point out
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Figure 1. PCA plots according to similarity matrices in all (A: Data set
1), common (B: Data set 2), low-frequency (C: Data set 3) and rare SNVs
(D: Data set 4). In simulation data sets, three populations were assigned
to green, red or blue colors. In simulation scenarios that include rare
variants (A and D), weighted Jaccard matrix shows very poor clustering
because of extreme weights for the rarest variants. All simulation data (A–
C) showed little difference between GRM and unweighted Jaccard matrix
except the rare SNVs (D) where red population is more clustered in the
unweighted Jaccard matrix.

that such a clustering evaluation is best applicable to discrete
subpopulations, separation of which can be evaluated in the PC
space of corresponding PCA method.

Figure 2. The highest correlation between global and local PCs in each
similarity matrix reflected the local substructure of all (A), common
(B), low-frequency (C) and rare SNVs (D), as illustrated in the plots
with an average of 100 data sets (mid-region: five populations versus
outer-region: two populations). The correlation in mid-region is lower
as MAF decreases. The unweighted Jaccard matrix produces the lowest
correlation in the case of rare variants.

Results
Comparison of clustering performance using
each similarity matrix under various MAF
conditions in a simulation study
We have simulated three populations with an Fst of 0.1% and
used different MAF bins as described in Table 1, Supplementary
Figure 3 and Methods. We performed PCA based on each similarity
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Table 2. The goodness of fit test based on the within sum of squares in PC1 and PC2 for population stratification in each similarity
matrix under the common, low-frequency and rare MAF simulations (total sum of squares = 2.0)

MAF Simulation Number of SNVs GRM Unweighted
Jaccard matrix

Weighted Jaccard
matrix

P-value∗

All SNVs Data set 1 9904 0.4702 0.4711 1.998 –
Repeated simulation
(n = 100)

9899.97 ± 9.66 0.4709 ± 0.0126 0.4718 ± 0.0126 1.998 ± 0.00096 0.6079

Common SNVs Data set 2 9862 0.4468 0.4472 0.8178 –
Repeated simulation
(n = 100)

9856.03 ± 11.35 0.4371 ± 0.0105 0.4380 ± 0.0105 0.8022 ± 0.0274 0.5707

Low-frequency SNVs Data set 3 9897 0.5051 0.5025 0.7504 –
Repeated simulation
(n = 100)

9918.47 ± 28.05 0.4834 ± 0.0118 0.4801 ± 0.0118 0.7175 ± 0.0200 0.0542

Rare SNVs Data set 4 9920 0.6288 0.5776 1.996 –
Repeated simulation
(n = 100)

9931.64 ± 36.48 0.6120 ± 0.0143 0.5608 ± 0.0132 1.995 ± 0.0022 <2.2E−16

∗P-value was calculated with t-test between GRM and unweighted Jaccard matrix based on 100 simulations.

Table 3. The average correlation between global and local PCs in each similarity matrix with 100 data sets (mid-region: five
populations versus outer-region: two populations)

MAF Simulation GRM Unweighted Jaccard matrix

Outer-region Mid-region Difference P-value∗ Outer-region Mid-region Difference P-value∗

All SNVs Repeated simulation
(n = 100)

0.7017 ±
0.0013

0.4332 ±
0.0031

0.2685 – 0.7011 ±
0.0013

0.4320 ±
0.0031

0.2691 –

Common SNVs Repeated simulation
(n = 100)

0.7221 ±
0.0016

0.4684 ±
0.0024

0.2538 1.53 × 10−09 0.7216 ±
0.0016

0.4672 ±
0.0026

0.2544 1.77 × 10−09

Low-frequency SNVs Repeated simulation
(n = 100)

0.6837 ±
0.0017

0.3905 ±
0.0032

0.2931 1.17 × 10−12 0.6844 ±
0.0016

0.3849 ±
0.0029

0.2995 3.09 × 10−14

Rare SNVs Repeated simulation
(n = 100)

0.5897 ±
0.0024

0.3023 ±
0.0030

0.2874 5.59 × 10−11 0.5888 ±
0.0027

0.2205 ±
0.0023

0.3683 <2.2 × 10−16

∗P-value was calculated with t-test where the differences were compared with the case of all SNVs in each GRM and unweighted Jaccard matrix.

matrix and assessed the clustering visually and using different
goodness of fit tests. Most of the variance is explained by the
first two PCs for each similarity matrix (Supplementary Figure 4).
We did not find substantial differences in the PCA plots among
three similarity matrices, except for the weighted Jaccard matrix
(PC1 versus PC2, Figure 1A–D). When rare variants are included
in the data set, PCA based on the weighted Jaccard matrix leads
to extreme outliers as compared with other matrices (Data sets 1
and 4 shown in Figure 1A and D). This is a natural consequence
of the weight definition in Schlauch et al. [17] that up and down
weighs all columns of the similarity matrix by an inverse binomial
weight vector computed using the number of variants, thus mak-
ing the weighted Jaccard matrix extremely sensitive to the rarest
SNVs (Supplementary Figure 5).

Next, we compared how well the first two PCs based on
different similarity matrices can separate the three artificial
populations. As a goodness of fit, we used the total within sum
of squares criterion with the original population assignment as
a baseline. Well-defined dense clusters provide a small value,
whereas dispersed clusters or clusters with outliers increase the
total within sum of squares. Among the similarity matrices, the
weighted Jaccard matrix had the largest values driven by the sen-
sitivity of the weight definition, which in the extreme case of rare
variants generates outliers as shown before (Table 2). However, we
observed that the unweighted Jaccard matrix had a much smaller
within sum of squares than both: the weighted Jaccard matrix
and the GRM based on rare variants (Figure 1D). Furthermore,
the repeated simulations (n = 100) confirmed the advantages of
the unweighted Jaccard matrix for clustering subjects with rare
variants (Table 2 and Supplementary Figure 6). The results in

simulations are consistent regardless of larger or smaller num-
bers of SNVs (around 20 000 or 5000 SNVs, Supplementary Table 2).

The performance among similarity matrices and
the role of the rare variants capturing the local
substructure based on CCA
Next, we compared the performance of similarity matrices to
capture local PS. The weighted Jaccard matrix was not included
in the comparison because of its performance in the clustering
analysis. To create local PS, we simulated a genetic region
where the outer parts contained two artificial populations
(50 000 + 50 000 SNVs) and the inner part contained five artificial
populations (mid-region: 20 000 SNVs). Using the same MAF bins
as in the previous section, we calculated global PCs based on the
whole region and local PCs based on evenly divided regions (n = 60
and window size = 2000 SNVs) for each similarity matrix. Finally,
we compared the canonical correlation between 10 local PCs
and 10 global PCs. In our repeated simulations (n = 100), the PS
was detected, indicated by the drop in the correlation between
global and local PCs in the CCA (Figure 2). In the CCA with
common and low-frequency SNVs, the local substructure was
captured but there was no difference among similarity matrices
(Figure 2B and C). However, we observed that the correlation
between global and local PCs in the mid-region, especially
with rare SNVs, was lower in the unweighted Jaccard matrix
than in the GRM (Figure 2D). Moreover, the gap in correlation
between mid- and outer-regions of the unweighted Jaccard
matrix is significantly larger in the case of rare SNVs compared
with low-frequency or common SNVs (0.3693, 0.2995, 0.2544,
respectively, in Table 3), which suggests that local substructure
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could be captured better using rare variants. Therefore, the CCA
simulations suggested that the unweighted Jaccard matrix can
capture a finer local substructure using rare SNVs.

In Figure 2, we observed that the similarity matrices clearly
capture the mid-region containing rare SNVs. A natural question
in this context pertains to the significance of certain correla-
tions observed in such local substructure plots: how would one
determine that an observed area of local substructure differs
from what is expected? We attempted to answer this question
using bootstrapping. For a given data set of genetic regions such
as the one depicted in Figure 2, we applied the following pro-
cedure. We calculated global PCs based on the whole data set
and local PCs based on randomly selected coherent windows of
the given window size (instead of evenly divided regions of a
given window size). We then computed the canonical correlation
between the 10 local PCs per window and the 10 global PCs
for the whole data set. This is repeated for R random windows
(we use R = 1000 in our experiments), thus allowing us to obtain
an empirical bootstrap distribution of correlations for random
windows. We reported the mean and the 5% and 95% quantiles
of this bootstrap distribution. Using the simulation setting of
the Methods section for CCA, Supplementary Figure 7 (with local
PS) and Supplementary Figure 8 (without PS) show the results
of this experiment. The mean of the bootstrap distribution is
given as a solid line, with the 5% and 95% confidence bands as
dashed lines. The bootstrapping method based on the Jaccard
matrix is displayed in blue, whereas results based on the GRM
are shown in purple. We observed that this metric allows one
to quantify to some extent the expected range of correlations
for a given data set. Observed correlations outside of the confi-
dence band could be flagged for special attention. We observed
in this example that using the Jaccard similarity matrix results in
lower correlation with smaller confidence bands than using the
GRM.

Assessment of local population structure in a
WGS data set of AD
Motivated by simulation results in the previous section, we eval-
uated local PS around the ‘APOE’ region, a well-known risk factor
for AD, in two WGS data sets of AD (Methods). In the ‘APOE’ locus,
we see that the correlation between global and local structure
is higher in NIMH AD cases with a smaller sample size (n = 418,
Figure 3A) than in NIA ADSP NHW AD cases (n = 4515, Figure 3B).
Also, in NIMH, we see a large difference in performance between
the unweighted Jaccard matrix and GRM. This could be because
of lower minor allele counts (MAC) in low frequency and rare
bins due to sample size. In data sets with predominantly NHW
individuals, we see that the correlation between the global and
local PCs is consistently lower when using the Jaccard matrix as
compared with the GRM matrix for low-frequency and especially,
rare variants. Finally, although none of the methods shows a
significant (i.e. outside of confidence bands) correlation difference
in the region that surrounds rs429358 (middle region), we do
see such difference in the neighboring regions among NHW and
AA for low-frequency variants and among HISP for rare variants
(Figure 3B–D). This could imply that local population structure
using low-frequency/rare variants is different from global struc-
ture in the ‘APOE’ region, which might indicate some allelic het-
erogeneity in this region. This observation would be supported
by the varying effect size estimates of the ‘APOE ε4’ allele across
ethnicities [34–36].

Next, we extended this analysis to the reported loci associ-
ated with AD (38 SNPs, respectively) in the recent large GWASs

Figure 3. Maximum canonical correlation between local and global PCs
in unrelated cases from NIMH (A), NIA ADSP NHW (B), NIA ADSP AA (C),
NIA ADSP HISP population data sets (D) for the ‘APOE’ region centered
around rs429358. Confidence bands were calculated using bootstrapping
with 1000 replicates as described in Methods (red line: GRM versus blue
line: unweighted Jaccard matrix).
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Figure 4. The PCA plots according to the genome-wide data sets in the European populations from 1000 Genome Project data (A: common SNVs, B: low-
frequency SNVs and C: rare SNVs; left panel: GRM and right panel: unweighted Jaccard matrix). The SNV quality criteria were 0.0% genotyping missing
rate or deviations from Hardy–Weinberg proportions (P-value < 10−6). The red arrow (C: rare SNVs) indicates that the GBR (green color) population is
better separated from CEU (orange color) population in the unweighted Jaccard matrix.

[30]. Using bootstrapping with 1000 random replicates for each
region, we have quantified the number of significant (i.e. out-
side of the CI) differences between local and global structures
around these GWAS loci across all MAF bins. Surprisingly, we saw
significant differences in more than half of the loci depending
on the data set, population, similarity matrix and MAF cutoff
(Supplementary Figure 9). In particular, we saw more significant
differences when using the Jaccard matrix for the rare variants
except for the HISP population.

The performance among similarity matrices in
the European and East Asian populations from
the 1000 Genome Project
Finally, using a real population-based data set from the 1000
Genomes Project, we assessed how well we could cluster sub-
populations using three different MAF bins (common, low fre-
quency and rare) and two different similarity matrices (GRM and
unweighted Jaccard). We selected two continental populations for
our analysis: Europeans and East Asians. In the European cohort
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Figure 5. The PCA plots according to the genome-wide data sets in the East Asian populations from 1000 Genome Project data (A: common SNVs, B:
low-frequency SNVs and C: rare SNVs; left panel: GRM and right panel: unweighted Jaccard matrix). The SNV quality criteria were 0.0% genotyping
missing rate or deviations from Hardy–Weinberg proportions (P-value < 10−6). The red arrows (C: rare SNVs) indicate that the CDX (orange color) and
the JPT (blue color) populations are more densely clustered in the unweighted Jaccard matrix.

of the 1000 Genomes Project, the remaining SNVs in each data set
(common, low frequency and rare SNVs) were 52 956, 213 139 and
433 285, respectively, after SNV quality control and LD-pruning
steps. In the East Asian cohort, they were 50 850, 240 014 and
571 135 in each data set (common, low frequency and rare SNVs),
respectively.

In cases of common and low-frequency variants, the PCA
plots (PC1 versus PC2 and PC3 versus PC4) showed no sub-
stantial difference in clustering of European or East Asian

subpopulations between GRM and the unweighted Jaccard matrix
(Figures 4A and B, 5A and B). In the case of rare variants, however,
the unweighted Jaccard matrix outperformed the GRM in both
European and East Asian populations (Figures 4C and 5C). In
detail, GBR among the European populations is clearly separated
when using the unweighted Jaccard matrix with rare variants
compared with the GRM with the same variants (Figure 4C, green
population). Among the East Asian populations, CDX and JPT
were more densely clustered in the unweighted Jaccard matrix
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Table 4. The goodness of fit tests based on clustering indexes for population stratification in each similarity matrix in the European
and East Asian populations in the 1000 genome project. Better clustering between and within subpopulations provides a larger
silhouette width or Fowlkes–Mallows index and a smaller Davies–Bouldin index

Index Matrix used in European
populations

Common SNVs
(n = 52 956)

Low-frequency SNVs
(n = 213 139)

Rare SNVs (n = 433 285)

Within sum of squares GRM 7.33387 7.15871 7.41454
Unweighted Jaccard matrix 7.33805 7.10288 7.12859

Average silhouette width GRM 0.11860 0.17672 0.17692
Unweighted Jaccard matrix 0.10915 0.18603 0.43785

Fowlkes–Mallows index GRM 0.54780 0.76288 0.83010
Unweighted Jaccard matrix 0.60959 0.75301 0.84687

Davies–Bouldin index GRM 3.34277 2.41018 1.81481
Unweighted Jaccard matrix 3.24087 2.56822 1.79457

Index Matrix used in East Asian
populations

Common SNVs
(n = 50 850)

Low-frequency SNVs
(n = 240 014)

Rare SNVs (n = 571 135)

Within sum of squares GRM 7.12564 7.22644 7.25937
Unweighted Jaccard matrix 7.26501 7.10025 7.11338

Average Silhouette width GRM 0.13069 0.20697 0.27154
Unweighted Jaccard matrix 0.11503 0.21325 0.36625

Fowlkes–Mallows index GRM 0.65764 0.65277 0.79487
Unweighted Jaccard matrix 0.70543 0.61634 0.79797

Davies–Bouldin index GRM 2.53257 2.03141 1.68264
Unweighted Jaccard matrix 2.36855 1.99933 1.62926

with rare variants (Figure 5C, orange and blue populations,
respectively) compared with the other cases. As a measure of
the goodness of fit, we used the total within sum of squares
criterion as well as clustering indices such as Davies–Bouldin
index, Fowlkes–Mallows index and average silhouette width.
Better clustering between and within subpopulations is indicated
with a smaller Davies–Bouldin index and a larger silhouette width
or Fowlkes–Mallows index.

Within sum of squares and the average silhouette width
among clustering indices clearly showed the outperformance
of the unweighted Jaccard matrix with the rare variants as
shown in PCA plots (Figures 4 and 5 and Table 4). The two other
measures show a better clustering when using the unweighted
Jaccard matrix as well; however, the difference is less pronounced.
Therefore, as shown here and in the simulation study, we can
reveal finer PS with the unweighted Jaccard matrix based on the
rare variants.

Discussion
Despite the vast majority of rare variants being population
specific, the utility of rare variants in PS analyses remains
controversial. Some reports mention that using rare variants for
PCA provides little benefit when handling PS in the admixed
genomic analysis compared with common ones [7–9]. Others
report that rare variants can be used to detect a finer PS [13, 37]. In
this study, we examined the use of rare variants when performing
PCA. We show that variants with a low MAC can indeed inform
on PS in a PCA analysis at least as well as common variants and
provide better clustering/fine-scale resolution in some cases. Our
study suggests some new insights for local PS capturing using
rare variants and shows an outlier issue when using the weighted
Jaccard matrix.

Through simulation studies and an application to real data,
we showed that PCA on the unweighted Jaccard matrix is more
sensitive than other similarity matrices (GRM) when applied to
rare variants (MAF < 0.5%) and shows better visual and clustering
performance as measured by several clustering indices. We have

not observed significant differences between similarity matrices
in other categories of MAF bins (common: >5%, or low frequency:
0.5–5%). Considering that the vast majority of human genomic
variation is rare (MAF < 0.5%) and population specific in WGS [16],
we suggested using the unweighted Jaccard similarity matrix with
the rarest variants when studying population structure instead of
GRM on common variants. In addition, we have asked the question
of whether rare variants could be used to capture local PS along a
chromosome. In simulation studies, we showed that, indeed, the
difference in canonical correlation between the outer region (less
PS) and inner region (more PS) is more pronounced when using
rare variants.

Furthermore, we assessed local PS in the ‘APOE’ region (a
known risk factor for AD) in two AD WGS data sets using only
AD cases. In particular, we saw a different local PS pattern in
rare variants among the NHW population, which could indicate
some allelic heterogeneity in this complex region. Additionally,
we proposed a bootstrapping method to assess the significance
of deviation of canonical correlation between global PS and local
PS for a particular region. Using this technique, we evaluated 38
AD-associated loci from a recent large GWAS paper and reported
that we see more significant differences between local and global
PS when focusing on low-frequency and rare variants.

This work leaves scope for a variety of avenues for future work.
First, outliers in the PCs seem to be commonplace, especially for
the weighted Jaccard matrix. This behavior is induced by SNVs
with the lowest MAF, causing the inverse weights in the weighted
Jaccard matrix to be (disproportionately) large. This made the
weighted Jaccard matrix somewhat less suited for PS analyses in
our studies. Outliers can be avoided by changing the weighting
scheme in the weighted Jaccard matrix. However, this remains
for future research. Second, calculating PCs on the (unweighted)
Jaccard matrix showed some instabilities when using the function
‘eigen’ in R (Supplementary Figure 2). Other functions are avail-
able, such as the function ‘eigs’ in the R-package ‘RSpectra’, which
might be more stable numerically. Overall, some care needs to be
taken to ensure all computations are numerically stable. Lastly,
we demonstrated in CCA that error bars can be computed for local
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to global PS. These error bands can potentially help in identifying
correlations that are of interest. The precise interpretation of the
local to global stratification plots remains for future research. We
also recommend exercising extreme caution in the interpretation
of PCA results, as those results can be sensitive to sample size,
number of used variants and population composition [38]. In the
era of WGS, we hope that our work encourages the use of the
Jaccard matrix with rare variants to inform PS in GWASs.

Key Points

• Rare variants (<0.5%), which are the vast majority of
the human genome, can provide better clustering/fine-
scale resolution when analyzing population structure
than common variants.

• Similarity matrices such as GRM and Jaccard matrix
make no difference in the categories of minor allele
frequency (common: >5%, or low frequency: 0.5–5%).

• The unweighted Jaccard matrix provides a better visual
and clustering performance when applied to rare vari-
ants in population structure analysis.

• Canonical correlation between global and local popula-
tion structure is different across all MAF spectra, and
the significance of this deviation can be evaluated via
bootstrapping.
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